

The Distant Type Ia SN Rate

R.Pain
Univ. of Paris, France

for the Supernova Cosmology Project

http://supernova.lbl.gov

Data sets

- 4 independent CTIO-4m data sets from SCP (cosmological parameters):
- set A: fall 95, 68 2kx2k, 0.43"/pixel
- set B: spring 96, 46 2kx2k, 0.43"/pixel
- set C: spring 97, 15 BTC, 4x2kx2k, 0.43"/pixel
- set D: fall 97, 11 BTC, 4x2kx2k, 0.43"/pixel
 - $2 \times 600 \text{ s}$ exposures $\times 2 R_{\text{lim}} = 22.5-24.5$

Total solid angle = 12 square degrees

Methodology

Three main parts:

- Nb of SN Ia
- Control Time (SN detection efficiency)
- Volume surveyed or/and galaxy luminosity

Rate =
$$\frac{\text{Nb of SN}}{\text{Volume/Luminosity x Control Time}}$$

Rate per unit Vol => h^3 Mpc⁻³ yr⁻¹
Rate per unit Lum => h^2 SNu
(1 SNu = 1 SN/10¹⁰L_{Bsun}/100 yr)

Detection of supernovae

A 2 steps process on image subtractions:

- Selection of transients events:
 - S/N>5 (S/N>3.5 in the original search)
 - $flux_{SN}/flux_{gal} > 0.15$
- Rejection of:
 - stat fluct., cosmics, asteroids with coincidences on split images
 - Hot/dead pixels, flatfield defects, bad subtractions with visual inspection of subs

Detection efficiencies

Computed adding fake SN (stars) on real images (galaxies)

SN/galaxy relative brightness

Identification of SNe Ia

Obtain spectrum for every event that passes the cuts:

- 4 "non SN" (QSO/AGN) and 53 "supernovae" with:
- 12 events below high threshold (S/N>5)
- 5 identified as "non Ia" (II/QSO or II/AGN or Ib/c)
- => 37 "possible SN Ia" with:
- 28 identified as Ia (SiII/SII "W"/CaII H&K,..)
- 9 identified as "probable Ia" (I + LC, host, stat,...)

(see SCP poster on SN spectroscopy for more about SN identification)

Rate per unit comoving volume

- 1 Compute the expected nb of SN Ia vs redshift
- 2 fit to the observed distribution (left plot)

3 - Compute the nb of SN Ia per sq deg per yr vs redshift

Systematic Uncertainties

We estimated systematics from:

- Detection efficiencies/identification (~10%)
- Range of Ia Lightcurves (~10%)
- Field calibration
- Cluster contribution
- Galaxy extinction
- Luminosity estimate (~10%)

No estimate made of systematics from host galaxy inclination or extinction

Results

Using:
$$\Omega_{\rm M} = 0.28^{+0.10}_{-0.09} (\Omega_{\rm Tot} = 1)$$

and:

 $R_V = 1.53^{+0.28}_{-0.25}^{+0.32}_{-0.31} 10^{-4} \text{ h}^3 \text{ Mpc}^{-3} \text{ yr}^{-1}$

